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Abstract 

Go-arounds (GA) are a relevant safety event that may occur during the approach phase of the 

flight due to several reasons such as unstable approach, loss of separation minima or adverse 

weather. In dense terminal control areas, this manoeuvre, even though it is a standard procedure, 

can generate significant and additional air traffic control (ATC) workload as it requires a quick 

and accurate reaction in order to safely reintegrate the flight into the traffic flow and 

immediately establish a new approach and landing sequence. In current operations, air traffic 

controllers typically become aware of a GA during or after their execution, which leads to a 

very short time horizon for operational decision-making. This research aims to propose and 

evaluate the operational impacts of a real-time monitoring and alerting solution for ATC 

decision support in approach control facilities and aerodrome control towers. The solution is 

based on the use of surveillance data and the application of analytical and machine learning 

methods for identifying flight trajectory anomalies in real-time and predicting the execution of 

a GA. Based on a human-in-the-loop simulation of air traffic operations at the Sao 

Paulo/Guarulhos International Airport, it is assessed how the presence of such an alert that 

anticipates the occurrence of a GA affects the ATC performance. The results showed an 

increase in the perceived levels of situational awareness and safety as well as an increase in the 

efficiency of ATC decisions concerning the go-around, with an observed reduction of nearly 

two minutes in the flight time from the start of the manoeuvre and the landing when the alert 

was active. 

Keywords: Go-around, situational awareness, air traffic control, machine learning, 

human-in-the-loop simulation. 
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Resumo 

As arremetidas (GA) são um evento de segurança relevante que podem ocorrer durante a fase 

de aproximação do voo devido a diversos motivos, como aproximação não estabilizada, perda 

dos mínimos de separação ou condições climáticas adversas. Em densas áreas de controle 

terminal, esta manobra, embora seja um procedimento padrão, pode gerar uma carga de trabalho 

adicional e significativa no controle de tráfego aéreo (ATC), pois requer uma reação rápida e 

precisa, a fim de reintegrar com segurança o voo no fluxo de tráfego e estabelecer 

imediatamente uma nova sequência de aproximação para pouso. Nas operações atuais, os 

controladores de tráfego aéreo normalmente tomam conhecimento de uma GA durante ou após 

a sua execução, o que leva a um horizonte de tempo muito curto para a tomada de decisões 

operacionais. Esta pesquisa tem como objetivo propor e avaliar os impactos operacionais de 

uma solução de monitoramento e alerta em tempo real para apoio à decisão ATC em órgãos de 

controle de aproximação e torres de controle de aeródromos. A solução baseia-se na utilização 

de dados de vigilância, na aplicação de métodos analíticos e de algoritmos de aprendizado de 

máquina para identificar anomalias na trajetória de voo em tempo real e prever a execução de 

um GA. Com base em uma simulação human-in-the-loop das operações de tráfego aéreo do 

Aeroporto Internacional de São Paulo/Guarulhos, avalia-se como a presença de tal alerta que 

antecipa a ocorrência de um GA, afeta o desempenho das tomadas de decisão ATC. Os 

resultados mostraram um aumento nos níveis percebidos de consciência situacional e 

segurança, bem como um aumento na eficiência das decisões do ATC relativas à arremetida 

com uma redução observada de quase dois minutos no tempo de voo desde o início da manobra 

e o pouso quando o alerta estava ativo. 

Palavras-chave: Arremetida, consciência situacional, controle de tráfego aéreo, 

aprendizado de máquina, simulação human-in-the-loop. 
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1 Introduction 

1.1 Motivation 

Approach and landing are the most critical phases of the flight. The high density of 

operations, the navigation complexity, the number of aircraft configuration changes and the 

dynamics of weather conditions create a complex environment that places significant workload 

on both the flight crew and Air Traffic Control (ATC), with a higher likelihood of unanticipated 

events that can lead to unsafe or inefficient operations. For instance, between 2013 and 2023, 

the approach and landing phases accounted for 40% of the accidents worldwide, according to 

the International Civil Aviation Organization (ICAO), as shown in Figure 1-1. 

 

Figure 1-1 - Total number of aviation accidents (fatal and non-fatal) by flight phase between 

2013 and 2023. Source: ICAO (2024) 

Unanticipated events such as go-arounds (GA) are one of the main contributors for 

reducing the safety and efficiency levels during the approach. A GA is a missed approach 

manoeuvre that may be initiated by the pilot or ATC for various reasons, such as unstable 

approach, loss of separation, or adverse weather. Upon the occurrence of a GA, controllers 

typically have very short time horizon for decision-making. From the Aerodrome Control 

Tower (TWR) perspective, ATC instructions must be issued immediately to the pilot to avoid 

loss of separation between the aircraft performing a GA and other aircraft departing or 

approaching. At the same time, an effective coordination procedure with the Approach Control 

(APP) must be performed by the TWR to inform that an aircraft executed a GA and start the 

transfer of control and communication. APP controllers then must quickly issue ATC 

instructions to reintegrate the aircraft into the approach sequence while maintaining a safe and 
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expeditious traffic flow. Currently, these actions are performed reactively after the GA is 

initiated based on information relayed through voice communication. 

With the on-going aviation system’s digital transformation, several opportunities have 

arisen to develop novel real-time monitoring and alerting tools to enable more proactive, safe 

and efficient decision-making. Several initiatives are concentrated on flight crew operations. 

An example is the Runway Overrun Prevention System (ROPS+), an on-board cockpit 

technology designed to reduce exposure to runway excursion risk (NAVBLUE, 2018). It 

continuously monitors total aircraft energy and anticipates the landing performance in wet or 

dry conditions, aiming to increase pilots’ situational awareness during landing. Despite the 

existence of several studies describing that situational awareness is crucial for the successful 

performance of decision makers in aviation (ENDSLEY et al., 2001), there is a lack of 

monitoring and alerting tools, in real time, in support of ATC operations, especially during 

abnormal conditions. 

Recent research has explored the use of increasingly available operational data and 

machine learning techniques towards the development of real-time monitoring tools for 

enhanced decision-making in the Air Traffic Management (ATM) context. A particular 

emphasis has been placed on the detection of anomalies in flight operations data, as anomalies 

are often related to critical safety events or inefficient operations. While these studies have 

focused on the development of predictive models that can be applied in online settings for real-

time monitoring and alerting of significant anomalous events, the operational impacts of such 

solutions for ATC decision-making are typically left unexplored. 

This work seeks to investigate the use of data-driven predictive models for real-time 

monitoring of approach trajectories and alerting of GA events while evaluating the contribution 

of such an alerting solution towards supporting ATC decisions during these events. For 

illustration of the real-time monitoring solution envisioned in this work, Figure 1-2 shows a 

hypothetical alert message of a potential GA displayed on the Human Machine Interface (HMI) 

of an ATC surveillance system, which refers to a screen used by the air traffic controllers 

(ATCO) – hereinafter referred to as “controller(s)" – to visualize and interact electronically 

with the labels associated to a flight plan. 
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Figure 1-2 - Hypothetical GA alert message displayed on the HMI of an ATC surveillance system 
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1.2 Thesis Objectives  

This thesis aims to develop a data-driven approach for real-time monitoring of approach 

operations and alerting of GAs and evaluate the operational impacts of such an alerting solution 

for ATC decision-making and performance. Specifically, the objectives of this thesis are: 

• To explore the use of aircraft tracking data generated by surveillance systems 

and the application of analytical and machine learning methods for online 

detection of flight trajectory anomalies and prediction of GA events; and 

• To develop a Human-In-The-Loop (HITL) simulation study to analyse how the 

ATC performance, actual and perceived, is affected in the presence of a 

hypothetical tool that monitors the approach trajectories and anticipates the 

occurrence of a GA event. 

1.3 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 provides background information related 

to flight operations during the final approach and management of GA events by ATC. It also 

reviews the related literature on data analytics for anomaly detection on flight operations and 

simulation approaches for ATC operational performance evaluation. Chapter 3 details the 

methodological approach, describing the data and methods used, the algorithms developed for 

the detection of GA events and the HITL simulation study conducted to investigate the 

operational impacts of an ATC decision support tool. Chapter 4 presents and discusses the 

results of the work. Finally, Chapter 5 summarizes the conclusions and provides potential 

directions for future work. 
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2 Background and Literature Review 

This Chapter provides background information about flight operations and aircraft 

performance during the final approach phase, the main contributing factors to a GA event and 

its potential impact in ATC decision-making and performance. Additionally, we discuss 

previous studies related to the identification and prediction of flight path anomalies through 

data analytics and the use of Human-In-The-Loop (HITL) simulations to evaluate the 

operational performance of ATM processes. 

2.1 Flight Operations and Performance on Final Approach 

A GA is a missed approach manoeuvre that may be initiated by the pilot or ATC for 

various reasons. Unstable approaches are one of the most common potential causes for such 

events. There is no standard definition for the unstable approach, but it can be defined as an 

approach during which an aircraft does not maintain, at least, one of the criteria, described by 

ICAO and Federal Aviation Administration (FAA), as the stabilized parameter (SINGH et al., 

2020). Accordingly, the Flight Safety Foundation (FSF) Approach and Landing Accident 

Reduction (ALAR) briefing note 7.1 (FSF, 2000) all flights must be stabilized by 1,000 ft above 

airport elevation (AAL) in Instrument Meteorological Conditions (IMC) and 500 ft above 

airport elevation (AAL) in Visual Meteorological Conditions (VMC). An approach should be 

considered stable when all the following stabilized approach elements are met (IATA, 2017): 

● The aircraft is on the correct flight path; 

● Only small changes in heading/pitch are necessary to maintain the correct flight path; 

● The airspeed is not more than the threshold crossing reference speed VREF + 20 kt 

indicated speed and not less than VREF; 

● The aircraft is in the correct landing configuration; 

● Sink rate is no greater than 1,000 ft/min; a special briefing should be conducted if an 

approach requires a sink rate greater than 1,000 ft/min; 

● Power setting is appropriate for the aircraft configuration and is not below the 

minimum power for the approach as defined by the aircraft operating manual; 

● All briefings and checklists have been conducted; 
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Specific types of approach are stable if they also fulfil the following: 

▪ ILS approaches must be flown within one dot of the glide slope and localizer; 

▪ a Category II or III approach must be flown within the expanded localizer band; 

An aircraft must meet certain criteria on approach to be able to land safely and an 

approach can be considered stabilized only if all criteria in the company’s Standard Operating 

Procedures (SOPs) – a framework of common procedures set out by an airline which supports 

pilots in operating a commercial aircraft safely and consistently – for flight deck crewmembers 

are met before or when reaching the applicable minimum stabilization height, i.e., 1,000 ft AAL 

in IMC and 500 ft AAL in VMC (ICAO, 2018). When a unique approach conditions or 

abnormal situations necessitating a deviation from the elements of a stable approach are 

identified, a special briefing among the flight crew is required, so that they may foresee the 

procedures to be executed. 

In order to avoid manoeuvres that can deviate that aircraft from the approach axis (i.e., 

shallow approach – below glide path, low-airspeed manoeuvring – energy deficit, excessive 

bank angle when capturing the final approach course, etc.), only minor speed adjustments not 

exceeding plus/minus 40 km/h (20 kt) indicated airspeed (IAS) should be used for aircraft on 

intermediate and final approach. Additionally, speed control from ATC should not be applied 

to aircraft after passing a point 7 km (4 NM) from the threshold on final approach (ICAO, 

2018). 

Despite the established criteria on SOPs, some contributory factors may lead to a GA, 

such as flight crew fatigue, inefficient approach preparation, ATC instructions, inappropriate 

management of altitude or speed, adverse meteorological conditions etc (IATA, 2022). 

The above-mentioned parameters are closely related to inappropriate management of 

aircraft energy. This is because an aircraft in flight, and in particular a large aircraft, possesses 

a great deal of energy that must be dissipated appropriately during descent, landing and rollout. 

The energy of any aircraft of mass m can be written as in Equation (1): 

 

Total Energy = ½ m v2  + m g h (1) 

(Kinetic Energy) (Potential Energy) 

where v is ground speed and h is the altitude of aircraft. Though mass is also changing 

due to fuel consumption, in this dissertation, it is assumed to be constant as the area of study is 

the final approach and landing, where the change is negligible. Managing an aircraft during the 
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descent and approach phases essentially becomes a task of managing energy, which is provided 

by aircraft speed and level. 

A pilot performing an approach with excessive sink rates and attempting to capture a 

glide path from above at the same time changes the energy state of the aircraft, which is difficult 

to manage with the possible consequence of a hard landing or even a Controlled Flight Into 

Terrain (CFIT). Therefore, a long landing or a landing at excessive speeds can result in a veer 

off or overrun, excursions in which an aircraft departs the physical edges of a runway/taxiway 

or departs the end of a runway, respectively. 

As mentioned above, the criterion for continuing an approach generally relates to the 

aircraft’s position, height (1,000 ft AAL in IMC and 500 ft AAL in VMC), speed, configuration 

and should be outlined in SOPs. For each performance criterion, such as speed, rate of descent, 

etc., the aircraft must be within a certain tolerable “window” (or “envelope”) to be classified as 

“stabilized” and continue the approach to land. Therefore, should the aircraft on approach/final 

phase not meet these criteria, it is considered to be unstable and a pilot should be expected to 

execute a GA or missed approach procedure, which is a rare but normal manoeuvre. A GA from 

an instrument approach should follow the specified missed approach procedure, unless 

otherwise instructed by ATC. The missed approach should be initiated not lower than the 

decision altitude/height (DA/H) in precision approach procedures, or at a specified point in non-

precision approach procedures not lower than the minimum descent altitude/height (MDA/H). 

In that respect, if an approach is not stabilized in accordance with what is outlined in 

SOPs or has become destabilized at any subsequent point during an approach, this event can be 

characterized as an anomaly in the flight path of the aircraft performing an instrument approach 

procedure (IAP), resulting, potentially, in a GA. Furthermore, it is responsibility of the Aircraft 

Operator (AO) to develop and promulgate a clear policy on GAs, which states that a GA is a 

normal flight manoeuvre to be initiated whenever a continued approach would not be safe or 

when the approach does not meet the stabilized approach criteria. In order to prevent this 

undesired situation, stabilized approaches are more likely when effective collaboration, 

cooperation and communication occur between all participants, including, among others, the 

AO, Air Navigation Service Providers (ANSPs), controllers and, of course, the pilots 

themselves, allowing the aircraft to accurately follow the published IAP. 
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2.2 Management of Go-around Events by ATC 

2.2.1 Reaction Time Following a Go-around 

Air traffic controllers and pilots have very short decision time, combined with high 

workload when a GA is performed, as a consequence of an unstable approach or inefficient 

operation. This period of time (T), as explained in the next paragraph, is crucial and may impact 

the effectiveness of an ATC instruction provided. From the TWR controllers’ perspective, the 

workload is caused when they must issue, immediately, ATC instructions to the pilot to avoid 

loss of separation between the aircraft performing a GA and another one, for instance, rolling 

for a take-off in the same runway, both keeping the same axis. Additionally, and at the same 

time, an effective coordination procedure with the APP must be performed by the TWR, 

informing that an aircraft executed a GA and then, start the transfer of control and 

communication as soon as the coordination is carried out satisfactorily. 

Based on the above, the time interval (T) can be broken down for each of the following 

situations happening during a GA: 

1. the pilot recognizes the necessity to initiate a GA (t1); 

2. the pilot configures the aircraft to initiate the GA and manage the high workload 

in the cockpit (t2); and finally 

3. the pilot communicates to the ATC that aircraft is executing a GA (t3). 

The sum of all these times, T = ∑ 𝑡𝑖3
𝑖=1 , expresses how much time would have passed 

since the event that gave rise to the GA had occurred until the moment when the TWR 

controllers received the communication from the pilot that a GA would be executed. For the 

APP controllers, an additional time t4 is observed due to the relay of information regarding the 

GA event through voice communications. With the lack of the information of the exact moment 

when the pilot could, potentially, initiate a GA, the controllers are not able to plan, in advance, 

actions to ensure a new, safe and fluid approach sequence. 

2.2.2 Workload Considerations 

As mentioned in Section 1.1, aircraft operations on final approach and landing are the 

most critical flight phase and require accurate control and coordination among flight crew, air 

traffic controllers, and ground operations personnel, which may be considered as contributing 

factors to increasing the workload for pilots and controllers. Accident and incident analyses 

have revealed that GA procedures are often imperfectly performed because of their complexity, 
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their high time stress, and their rarity of occurrence that avails little time for practice (DEHAIS, 

2017). Considering the operations performed by the flight crew, the pilot performance results 

showed that two thirds of the crews committed errors including critical trajectory deviations 

during GAs, a precursor of accidents. It is important to highlight that these “operational errors” 

may lead to unexpected behaviours from the aircraft on final approach, which can compromise 

the safety of operations, resulting in increased workload and stress of controllers at the APP 

and TWR. 

From ATC perspective, GA intensify the workload of air traffic controllers, as landing 

sequences must be amended to accommodate the aircraft that failed to land in a reorganized 

approach sequence (GARIEL, 2011). Also, their work suggested that having a large number of 

incoming aircraft increases the probability of having a GA. From a human factor’s perspective, 

a large number of aircraft simultaneously present in the terminal airspace increases the 

workload of the controllers, probably leading to more “operational errors” and violation of 

landing minimum separation distance. Socha et al. (2020) affirm that even after several years 

of experience, one abnormal situation, such as a GA, can represent a much higher workload 

with regards to the capacity of the controller than the control of several aircraft during a standard 

operation. 

While controller workload is a subjective measure, Welch et al. (2007) proposed a 

general macroscopic workload model that considers that any defined controller activity can be 

uniquely assigned to one of the four following types of task: background, transition, recurring, 

and conflict tasks. When a GA occur, the rate of occurrence of all these tasks (with the exception 

of background) tends to increase, affecting the controller workload. The need for coordination 

and transfer of control between the TWR and the APP increases the transition workload. The 

need for flight plan changes, status updates and conformance monitoring after the GA 

contributes to increasing the recurring workload. Furthermore, the management of potential 

conflicts between the GA aircraft and other aircraft in the vicinity of the airport is expected to 

increase the conflict workload. 

In that respect, the development of a tool dedicated to anticipating GA events and 

increase the situational awareness of controllers could improve the reaction time for real-time 

air traffic control decision support, allowing for better management of the tasks and associated 

workload resulting from these events. 
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2.3 Assessing Flight Performance and Identifying Anomalies from Operational Data 

Nowadays, significant technological advancement in aeronautical infrastructure and 

aircraft systems has allowed the use of several sources of data to assess flight performance, 

such as flight tracking data from surveillance systems and detailed aircraft performance data 

from modern digital Flight Data Recorders (FDR). GA events are typically characterized by 

flight path anomalies in the final approach, which can be identified as observations (flight 

profiles) that are significantly different from others (MORI, 2021). In general, there are two 

approaches for anomaly detection: unsupervised learning and supervised learning. The 

difference is that the latter requires the predetermined label for each data. Mori (2021) also 

explains that most of the previous work applied unsupervised learning, especially because of 

the common lack of labelled data. 

Anomaly detection initiatives have been extensively explored for proactive safety 

management in airline operations based on Flight Data Recorder (FDR) data and Flight 

Operational Quality Assurance (FOQA). Gorinevsky et al. (2012) demonstrates an application 

of a data driven monitoring approach called Distributed Fleet Monitoring (DFM) to FOQA data 

that transforms the data into a list of abnormal performing aircraft, abnormal flight-to-flight 

trends, and individual flight anomalies by fitting a large scale multi-level regression model to 

the entire data set. Li et al. (2011) also used a set of FDR data, creating subsets by aircraft 

models, and suggested a new cluster-based anomaly detection method to detect abnormal 

flights, anomalies and associated risks from routine airline operations. Clustering is an 

unsupervised learning method used to identify groups of similar observations in a dataset 

without any prior knowledge (MURÇA, 2021). Chandola et al. (2009) affirm that although 

clustering and anomaly detection appear to be fundamentally different from each other, several 

clustering-based anomaly detection techniques have been already developed. 

Still considering the unsupervised learning approach, Stogsdill et al. (2021) proposed 

the development of a metric concept that distinguishes between normal and abnormal 

operational data, collected on board the aircraft – FDR – (1,000 Boeing 737–800 flights) to 

investigate ways of differentiating between “normal” and “abnormal” operations prior to an 

event occurring. The approach was to develop two construct variables that were designed with 

the aim to: (1) differentiate between normal and abnormal landings (row_mean); and (2) 

determine if temporal sequence patterns can be detected within the data set that can differentiate 

between the two landing groups (row_sequence). Between these two variables, row_sequence 

seems to be, in a first analysis, more appropriate to be further used in our trajectory assessment, 
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where individual flights can be compared to historically commensurate approaches that ended 

successfully in the past, representing an offline model operation. Given the aim of the work was 

to differentiate between normal and firm landing groups, Stogsdill et al. (2021) chose to search 

for two clusters within the data with the explicit intent of separating out normal from firm 

landings into two different clusters generated by the algorithm. Stogsdill et al. (2021) affirm 

that this variable is dependent upon the logic that a pilot on an approach must make decisions 

about how to achieve the desired goal (i.e., a safe landing) at touchdown based only on the data 

available at or before the present. 

On the other hand, from the Air Traffic Management (ATM) operations perspective, 

few studies have explored online anomaly detection on flight tracking data (surveillance data), 

being mostly focused on offline anomaly detection for post-event air traffic performance 

analysis (MATTHEWS et al., 2013; MURÇA et al., 2016; OLIVE et al., 2019). 

Specifically, Matthews et al. (2013) applied anomaly detection algorithms on a portion 

of the Performance Data Analysis and Reporting System (PDARS – FAA tool) data warehouse. 

This approach currently focuses on measuring the frequency of occurrence of known events 

based on previously identified issues. When it comes to focus on offline anomaly detection for 

post-event air traffic performance analysis, this method provides to the FAA personnel a safety 

and operational efficiency perspective, considering previously unknown anomalies in the data 

set. 

Taking an empirical approach to identify operational factors at busy airports that may 

predate GA manoeuvres, Gariel et al. (2011) used four years of surveillance data (from 2006 to 

2009), from San Francisco International Airport (SFO), extracted from secondary radar, so that, 

if the causes are identified, mitigation action can be taken in order to reduce the number of GAs 

without impacting airport throughput. To facilitate the investigation of GAs, Gariel et al. (2011) 

assembled a corpus of samples, each of which is one of two types: i.) samples of the airport 

state during nominal operations in which no GAs occur and ii.) samples of the airport state 

during a window in which a GA does occur. 

The following rule was used to label a flight as containing a GA: a flight contains a GA 

if during the plane’s terminal flight phase, the plane’s altitude increases for fifteen consecutive 

measurements following a period in which the plane descended for at least ten consecutive radar 

measurements. At the sample rate at which measurements were taken, this corresponds to 

approximately 70 seconds of continuous increase in altitude. Based on a number of airport 

operational features (weather, traffic density and aircraft mix and ground traffic and delay), 

each of which is readily accessible to on-duty air traffic controllers, and the role fluctuations in 
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them may play in precipitating a missed approach, and analysing how the distribution of these 

features varied between nominal and GA operations, Gariel et al. (2011) provided a statistical 

mechanism to gain insight into which factors are more likely to be a discernible precursor to 

GAs. 

By contrast, some studies have leveraged supervised learning techniques for anomaly 

detection. Deshmukh et al. (2019) applied a supervised learning algorithm, from air traffic 

surveillance and airport operations datasets, to detect precursors for flight anomalies in the 

terminal airspace from surveillance data. Their work is based on multi-airport (metroplex) 

terminal airspace, which is one of the most complicated subsystems to manage, especially due 

to the interactions between closely located airports. Analysis of anomalous behaviours in the 

metroplex is emerging as a key problem in understanding air traffic management complexity 

and safety. The proposal is to use a machine learning-based anomaly detection algorithm that 

generates mathematical models to detect anomalies in metroplex operations. Several machine 

learning algorithms have been developed to detect anomalies using only air traffic surveillance 

data, but there is a significant scope of improvement by including airport operational 

characteristics as well, since integrating such closely controlled metroplex operational datasets 

allows the developed models to effectively detect anomalies. 

Another example of unsupervised learning application, but with a different data source, 

was the method proposed by Puranik et al. (2018). Energy-based metrics are used to generate 

feature vectors for each flight data record. Density-based clustering and one-class classification 

are then used together for anomaly detection using energy-based metrics and clustering 

algorithms with the goal of characterizing the relationship between energy and anomalies in the 

terminal airspace. Puranik et al. (2018) also state that for identifying flight level anomalies, 

well-defined phases of flight need to be considered as they can be easily compared across 

different flights, which is entirely aligned with this work that concentrate, specifically, in final 

approach phase operations. 

Puranik et al. (2020) advanced their previous research towards, at this time, an online 

predictive model of aircraft energy state using supervised machine learning models, which has 

a similar approach of our work, using flight data from the approach phase. The goal of Puranik 

et al. (2020) is to generate a sequential energy states prediction model that can identify risk 

during approach phase. Aligned with this work, Coelho and Murça (2023) developed a data-

driven approach applied to online detection of anomalies from streaming data, which provides 

the basis for novel real-time monitoring and alerting tools.  
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While previous studies have shown great potential for the use of flight operations data 

and machine learning techniques to develop predictive models that can be applied in online 

settings for real-time monitoring and alerting of significant anomalous events, the actual 

impacts for ATC decision-making have not been explored. 

2.4 HITL Simulation Approaches for Operational Performance Evaluation 

The use of Human-In-The-Loop (HITL) simulation has been the primary means for 

investigating the operational impacts of novel concepts and tools in complex systems with high 

human factor dependence, allowing for their validation before actual deployment in the real-

world. A HITL simulation is based on a reasonably high-fidelity model of the real-world 

environment, incorporating the active involvement of human participants within the simulated 

environment. HITL data are often thought to provide the strongest level reliability in testing the 

interaction between humans and machines (VOLF, 2014). Also, HITL simulations represent 

one of the most powerful and realistic testing tools and can provide valuable feedback on how 

new features influence the behaviour of human operators. 

In the context of ATM, HITL simulation studies have been extensively performed to 

investigate how air traffic controllers and managers perform under new operational processes 

and systems. For example, Bromberg et al. (2014) used HITL simulations to analyse the 

communication process between the flight operations centre (FOC) and Air Traffic 

Management (ATM), the automation tools required to model, execute and support a capability-

aware Traffic Management Initiative (TMI), and roles and responsibilities of various 

stakeholders in this process. In another example, Guibert et al. (2010) used HITL simulation to 

evaluate the so-called Contract of Objectives (CoO), which is a formal and collaborative 

commitment of ATM actors (i.e., airspace users, Air navigation services providers (ANSP), 

airports), to the conduction of each flight. A few HITL studies have evaluated the operational 

impacts of novel decision support tools for air traffic controllers, such as separation 

management (PREVOT et al., 2008) and dynamic sectorization tools (AHRENHOLD et al., 

2023). Yet, to the best of our knowledge, there is no prior study dedicated to evaluating the 

potential impacts of a real-time monitoring and alerting tool for ATC decision support during 

the final approach. 
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2.5 Research Contributions 

This research seeks to propose novel data-driven models for online detection of 

anomalous approach performance and prediction of GA events towards the development of 

real-time monitoring and alerting capabilities for ATC decision support. Besides, through a 

realistic human-in-the-loop simulation of air traffic operations, it is analysed how the presence 

of an alert presented at the controller working position/human machine interface (CWP/HMI) 

that anticipates the occurrent of a GA event affects ATC decision-making and performance. 
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3 Methodology 

3.1 Surveillance Data-Driven Approach for Alerting of Go-around Events 

This research considers a data-driven approach and uses openly available aircraft 

surveillance data to model the behaviour of an aircraft on final approach phase. The surveillance 

data used in this work was mainly from ADS-B, an implementation of the Mode-S Extended 

Squitter, where the transponder periodically broadcast essential state information of the flight, 

enabling the aircraft tracking. 

3.1.1 Data Description and Pre-Processing 

The flight tracking database used for this work was extracted from the OpenSky Network 

(OPENSKY, 2024) and represents a typical month of operations at Sao Paulo/Guarulhos 

International Airport (SBGR). The original raw data contains 139,411 records, corresponding 

to 4,864 different flights (identified by its call signs) that operated at SBGR on November 2019. 

This corresponds to nearly half of the monthly commercial operations at SBGR. The OpenSky 

Network has been collecting valuable flight tracking information since 2017. Although its 

coverage in the Brazilian airspace is still limited, the platform currently is the only open 

surveillance data source available for studying the air traffic flows in the region. 

Each of the records in the original database, containing 139,411 rows, comprises several 

data related to a specific flight, presented in columns, representing its descent profile registered 

every 10 seconds of flight approximately. Some missing data were identified in the original raw 

data, resulting in intervals of more than 10 seconds between flight records. However, these gaps 

did not impact the data-driven modelling, as the algorithms for online prediction of GA events 

either account for the time interval between tracking records or perform resampling as a pre-

processing step, as it will be explained in the following sub-sections. 

The following flight information were used for the analysis: 

a) Call sign; 

b) Barometric altitude; 

c) Indicated air speed (IAS)/Ground speed (GS); 

d) Magnetic heading; 

e) Rate of climb/descent (ROC/D) 

f) Time (year/month/day/hour/minute/second) 
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g) Departure airport; 

h) Destination (SBGR); and 

i) Runway (RWY) 

For each specific call-sign in the database, a set of records (rows) represents the flight 

movement in four dimensions (4D) in the airspace, as presented in Table 3-1. 

Table 3-1 - Set of records (rows) for a specific call-sign 

 

From the original raw data, some unit conversions were necessary to facilitate the 

association with the international aviation units (ICAO standards) and to help a visual 

interpretation and assessment of the flight profile for each flight in the database rows. 

Barometric altitudes were converted from meters (m) to feet (ft), as following: ALTft = ALTm 

x 3.2808. For aeronautical purposes, this work will use, initially, barometric altitude instead of 

geometric altitude (these values are also available in the database). Barometric altitudes are 

widely used in aviation today to ensure vertical separation between aircraft and terrain on 

instrument flight procedures, to define certain vertical approach paths and to determine all the 

minimum altitudes, in particular the MDA/DA (Minimum Descent Altitude/Decision Altitude). 

The indicated air speeds were converted from meter per second (m/s) to knots (kt), as following: 

IASkt = IASm/s x 1.9438. 

Specifically for the magnetic heading, the magnetic declination was applied to the “true 

track” (tt) available in the database, by adding the VAR 22ºW (current value for SBGR), 

resulting: HDGmag = HDGtt + 22ºW. After conversion, values higher than 360º were decreased 

of 360º, resulting in values corresponding to the circle for magnetic compass (0º/360º), for 
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example: 340ºtt +VAR 22ºW = 362ºmag; 362ºmag – 360º = 002º mag. This conversion was also 

necessary to facilitate the visual interpretation of the profile, once the RWY 09 or RWY 27 

(magnetic heading 095 and 275, respectively) of SBGR were used, which differs from the 

true track by the VAR 22 presented in the original database. The values corresponding to the 

rate of descent and rate of climb (ROD/C) were also converted from meter per second (m/s) to 

feet per minute (ft/min), as following: ROD/Cft/min = ROD/Cm/s x 196.8504. 

3.1.2 Identification of Go-around Events Through Sequential Heuristics 

In order to develop the algorithms for online prediction of GAs, it was first necessary to 

identify such events in the database. Flights that performed GA manoeuvres were flagged based 

on sequential heuristics, applied in all records (rows) of the database. As the same call sign may 

exist in different days, the first step was to flag flights with the same call sign, operating in the 

same day and with destination SBGR, which, theoretically, guaranteed to be the same flight. 

This allowed for a correct two-way association of a flight with its complete descent profile in 

the database. 

In the second step, the database was filtered to keep the records below FL140 associated 

with terminal area operations. Then, flights in the descent phase (ALT(r+1) < ALT(r), where 

“ALT” is the altitude and “r” is the position of a flight in a specific register (row) of the 

database) that, from a specific point and for 3 consecutive records, inverted their descent 

vertical profile (ALT(r+1)>ALT(r)) by showing, consequently, a sequential “positive” rate of 

climb, were grouped in a separated subset and flagged as “UP”, as demonstrated in Table 3-2. 

Table 3-2 - Inversion of descent (red) to climb (green) vertical profile 
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Conclusively, all flights that were flagged “UP” and showed a “positive” rate of climb 

(ROC ≥ 0) after the 3 consecutive records were considered to execute a GA and were therefore 

grouped in the GA flights subset. 

Figure 3-1 shows a sample descent trajectory associated with a GA. From 10,000 ft to 

approximately 3,000 ft, it shows the portion of the trajectory prior to the GA, containing small 

variations in IAS and negative vertical speed rate (ROD). The instant at which the GA is 

initiated is indicated with a red arrow. Finally, after this point, the line corresponds to the period 

of at least 50 seconds of climb following the GA, until reaching the missed approach holding 

fix (MAHF), at 6,000 ft for this specific IAP. It is also observed that the vertical speed rate 

became positive (ROC) when the GA is executed, followed by a slight increase in IAS. The 

remainder of the trajectory, including the eventual landing, was not represented here. 

 

Figure 3-1 - Vertical profile (with ROD/C and IAS) of a flight that executed a GA 

After all iterations, 39 flights were flagged as GAs in the database. Figure 3-2 shows 

the vertical profile of these flights from the moment they cross the 10 NM distance mark from 

the runway threshold until landing. 
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Figure 3-2 - GA flights identified. 

3.1.3 Online Prediction of Go-around Events 

Based on the labelled dataset, two algorithms were developed for online prediction of 

GA events. The first one is a rule-based algorithm that considers the evaluation of operational 

parameters throughout the descent phase. The second one is a machine learning-based 

algorithm. 

3.1.3.1  Rule-Based Algorithm 

The rule-based algorithm analyses some operational parameters to identify whether a 

specific flight profile violates a specified threshold on final approach phase, which may induce 

to a GA procedure. Among the parameters presented in session 2.1, three of them were selected 

to create trajectory envelopes that represent acceptable deviations from an ideal operational 

performance: altitude, airspeed and heading. 

The algorithm considers a 3-degree glide-slope (GS) (ICAO, 2018) that refers to the 

ideal angle of descent that an aircraft follows when approaching a runway for landing. It is a 

standard angle used for instrument landing systems (ILS) and helps pilots maintain a safe and 

efficient descent path. The 3-degree glide slope is widely used in aviation as a standard for 

approach and landing procedures at airports around the world. Also, three gates are selected to 

evaluate the flight profile with respect to the trajectory envelope. 

The three gates established in the final approach are 1,600 ft, 1,000 ft and 500 ft. At 

these gates, the algorithm calculates the crossing altitude deviation tolerances (±300 ft) and 

verifies if the aircraft is on the correct flight path according to the established envelope, as 
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presented in Figure 3-3. Specific types of approach may not induce to a GA if the ILS 

approaches stay within one dot of the glide slope and localizer. One dot represents ± 0.8 degrees 

of deviation on the localizer (LOC) scale and ± 0.4 degrees on the glideslope scale. 

Simultaneously, the airspeed should not be more than the threshold crossing reference speed 

VREF + 20kt indicated speed and not less than VREF and the sink rate should not be greater than 

1,000 ft/min (CAMPBELL, 2021; AIRBUS, 2008). 

 

Figure 3-3 - Flight profile on final approach (not to scale) 

Calculation of the ideal rate of descent 

For a 3º GS, the required rate of descent in feet per minute (ft/min) is approximately 

equal to the ground speed in knots multiplied by 5. For example, applying this trivial “rule of 

thumb” generally applied by pilots during their flight operations, at 120 kt, the rate of descent 

to maintain a 3º GS is approximately 600 ft/min. This can also be demonstrated using simple 

trigonometry. Considering that tan (descent angle) = descent rate (%), it is possible to calculate 

the vertical speed as shown in Equation (1) and illustrated in Figure 3-4. For a 3º GS, descent 

rate = tan (3°) = 0.05240778 ≈ 5.2%. 

Vertical speed (ft/min) [ROD] = Descent rate (%) x Ground speed (knots) (1) 

 

Figure 3-4 - Trigonometry for rate of descent calculation 
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The rate of descent (ROD) at 120 kt is then obtained as follows: 

Tan 3º = ROD / 120 kt 

ROD = Tan 3º x 120 kt 

ROD ≈ 6.24 NM / h (kt) 

ROD = 6.24 / 60 = 0.104 NM / min 

ROD = 0.104 x 6076 (from NM to ft) 

ROD = 632 ft/min 

Calculations between two latitude/longitude points 

The flight tracking database does not contain the information of the horizontal distance 

from the runway threshold (THR) of the current 4D position of the aircraft. To obtain these 

values, for each 4D position in the database, the “Haversine” formula was applied, as shown in 

Equation (2). The formula calculates the great-circle distance between two positions, which is 

the shortest distance over the Earth’s surface. 

Haversine formula: d = distance between two positions (2) 

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2) 

c = 2 ⋅ atan2( √a, √(1−a) ) 

d = R ⋅ c 

Where φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km); 

note that angles need to be in radians to pass to trig functions. 

The calculation of the exact linear distance from the THR is crucial to calculate the ideal 

geometrical altitude of the aircraft for a GS of 3º, in order to compare with the altitude extracted 

from the flight tracking database. Once the distance is calculated, the tangent of 3º is applied, 

so that the correspondent altitude of the aircraft may be determined at the GS, as illustrated in 

Figure 3-5 and described in Equation (3). 
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Altitude at the GS = Tan 3º x Distance to THR (3) 

 

Figure 3-5 - Altitude calculation at the glide slope with 3º angle 

In all cases, a more accurate altitude correction should be done in order to compare the 

true altitude, instead of the one indicated on the altimeter and seen by the pilot (Baro ALT), 

with the geometrical altitude based on the GS of 3°, at each point. In that respect, the indicated 

altitude, provided by the flight tracking data, should be corrected, due to the effect of the 

temperature variation. 

There are a number of correction methods that can be used for determining the necessary 

altimetry correction to compensate the effect of temperature variation (ICAO, 2018; ICAO, 

2006). We applied the correction described in Equation (4), which is suitable for practical 

application and local temperatures above -15ºC. Other methods are more complex and normally 

used in case of calculating climb gradients or when the conditions are extremely different from 

ISA (temperatures below -50° C). In temperatures above ISA, the density of the air is lower and 

consequently the pressure values representing flight levels are even more separated and the true 

altitude will be higher than the indicated altitude in the altimeter (Baro ALT). Therefore, 

corrections have to be applied to ensure that the aircraft is following the ideal vertical path angle 

(VPA) when the temperature is above ISA. 

Barometric altimeters measure the air pressure and are calibrated according to the 

variation of the pressure with height, as specified for the international standard atmosphere 

(ISA), as shown in Table 3-3. 

Table 3-3 - International Standard Atmosphere, Mean Sea Level Conditions 
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In conditions identical to ISA, the indication on the altimeter indicates the altitude above 

mean sea level when the reference datum is the local QNH. It is part of the physics of the 

atmosphere that in case of a temperature deviation from ISA, the true altitude of a certain 

pressure value does no longer correspond to the altitude indicated on an altimeter that is 

calibrated to ISA. This variation may indicate, according to the true altitude, that the aircraft is 

above or below the geometrical altitude (at the GS), depending on the temperature is higher or 

lower the local ISA conditions, respectively, as presented in Figure 3-6. The temperature 

variation affects directly the effective VPA, as shown in Figure 3-7. 

 

Figure 3-6 - Relation between the altitude and the temperature variation from ISA 

Taking as an example the flight GLO1921, at the moment of the approach at SBGR, the 

temperature was 23.9°C, which indicates an ISA + 13.9 conditions (the ISA at SBGR is 10°C). 

The true altitude would therefore be above the geometrical altitude and the glide path would be 

steeper than the normal one, creating a potential and induced scenario for a GA for the pilot. 

The altimeter is calibrated against an ISA condition, where a particular set of values of 

temperature is assumed. If the temperature at the moment of operation is different from ISA, 

the indicated altitude will not correspond to true altitude. The temperature correction is 

necessary because, when flying close to the ground, it is necessary to know the true altitude, 

the effective VPA, in order to maintain terrain and obstacle clearance. 
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Figure 3-7 - Effective vertical path angle (VPA) 

Considering that all altimeter corrections have been made (position error, instrument 

error) and the correct QNH is set, the indicated altitude differs from the true altitude by 

temperature variation, which can be corrected using Equation (4): 

True Altitude = Indicated Altitude + (ISA Deviation × 4/1000 × Indicated Altitude) (4) 

Example: GLO1921 

True Altitude = 4025’ + (13.9 ºC x 4/1000 x 4025’) 

True Altitude = 4249’ > (Geometrical Altitude (GS) = 3876’) (∆ = +373’ above the GS) 

After applying the corrections for the indicated altitude (Baro ALT extracted from the 

flight tracking database), several altitude envelope infringements were identified for the flight 

GLO1921, along with infringements of the other defined operational parameters, as presented 

in Table 3-4, such as: 

a) After the FAF, the sink rate (ROD) was, constantly, greater than 1,000 ft/min, above 

the limit of 1,000 ft/min; 

b) At 3º GS, after the FAF the ideal IAS should be between 120 kt and 150 kt, with a 

ROD of 700 ft/min (± 50 ft/min). Due to the high ROD, the IAS was constantly 

above this value; 

c) After the FAF, the HDG is 095º (localizer course), however it was observed an 

important discrepancy from this value, from HDG 090º until 098º, point where the 
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GA was initiated, far above the tolerance of ± 0.8 degrees of deviation on the 

localizer; 

d) And finally, at the gate of ≈1,600 ft (QFE, THR ELEV = 2451 ft, RWY 09) on final 

approach, the required ALT is 3876 ft, but the flight crossed at 4249 ft (true ALT), 

a discrepancy of 373 ft above the GS (Table 3-4), where the tolerance is ± 300 ft. It 

is noted that, in this specific flight profile, the true ALT was constantly above the 

ideal glide path for a GS of 3º and exceeding the above-mentioned tolerance. 

Table 3-4 - Numeric representation of the flight profile of the flight GLO1921 

 

Bringing together all these violations for this specific flight, GLO1921, it can be better 

understood the contributing factors that led the flight to execute a GA. 

In summary, the rule-based algorithm computes ideal envelopes consisting of acceptable 

deviations from defined operational parameters and flags a flight as a potential GA whenever 

its parameters violate any of the established envelopes. 

 

Figure 3-8 - Vertical discrepancies in the vertical profile 

THR ELEV 
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3.1.3.2 Machine Learning-Based Algorithm 

The machine learning-based algorithm considers the application of clustering analysis to 

discover nominal patterns in the approach phase followed by probabilistic modelling of these 

nominal approach patterns to enable the online detection of anomalous behaviours. 

First, the approach trajectory is augmented with calculated energy metrics and resampled 

at every 0.5 NM to create a fixed trajectory feature vector. The Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm (ESTER et al., 1996) is applied 

to identify groups of flight with similar approach performance.  

The clusters identified with DBSCAN are then modelled in the form of a Gaussian 

Mixture Model (GMM) (HAND et al., 1988). We assume that the approach performance 

variation within the nominal patterns can be modelled with a probability density function given 

by a weighted sum of Gaussian densities. Given the existence of K clusters (components), the 

probabilistic model can be written as in Equation (5). Y is a categorical random variable 

representing the approach pattern. X is a multivariate random variable that represents the 

approach trajectory. The parameters of the mixture model are given by 𝜃 = {𝜋𝑦, 𝜇𝑦, Σ𝑦}, where 

𝜋𝑦 are the mixture weights, which satisfy Equations (6) – (7), and 𝜇𝑦 and Σ𝑦 are the mean 

vector and the covariance matrix of the multivariate Gaussian density that models the yth pattern. 

𝑝(𝑋) = ∑ 𝜋𝑦 𝑝(𝑋/𝑌 = 𝑦)

𝐾

𝑦=1

= ∑ 𝜋𝑦 𝑁(𝑋; 𝜇𝑦 , Σ𝑦)

𝐾

𝑦=1

      (5) 

0 ≤ 𝜋𝑦 ≤ 1     (6) 

∑ 𝜋𝑦

𝐾

𝑦=1

= 1     (7) 

The learned GMM is then applied in an online setting to predict the future trajectory 

behaviour based on partial trajectory observations through the computation of marginal and 

conditional densities, which are also known to be Gaussian. Given partial trajectory 

observations during the approach, the algorithm flags an anomalous behaviour if more than half 

of the predicted mean trajectory features falls outside the 95% confidence region of the nominal 

approach patterns. 
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3.2 Operational Evaluation 

A Human-In-The-Loop (HITL) simulation was conducted to evaluate the operational 

impacts of a real-time monitoring and alert solution for GA events. The goal was to evaluate 

how the ATC performance, actual and perceived, is affected in the presence of such a decision 

support tool. The simulation was carried out at the ATC Simulation Laboratory (LABSIM) of 

Instituto de Controle do Espaço Aéreo (ICEA), shown in Figure 3-9. LABSIM is the main 

facility used for recurrent training of air traffic controllers for the Brazilian Airspace Control 

System (SISCEAB). The ATC radar simulators at LABSIM provide a very realistic operational 

environment that allows the controllers to perform their tasks as if they were in the actual ATC 

facility. 

 

Figure 3-9 - LABSIM premises where the HITL simulation was conducted 

The operational environment simulated was the Sao Paulo APP, the ATC facility 

responsible for the provision of air traffic services to departing and arriving traffic in the Sao 

Paulo Terminal Manoeuvring Area (TMA-SP), and the TWR of Sao Paulo/Guarulhos 

International Airport (GRU), the ATC facility responsible for managing the airport landings 

and take-offs. Three working positions were monitored throughout the simulation: the final 

approach sector controller (APP FIN), the feeder sector controller (APP FEED) and the local 

controller (TWR) for GRU. 
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Four traffic scenarios for the TMA-SP and four teams of controllers were selected for the 

simulation. The selected scenarios, extracted from the Sao Paulo APP training portfolio, were 

those having a high level of complexity and workload to explore the most of the controllers’ 

reactivity in the face of dense traffic in the sectors. Each scenario was run twice. In the second 

run, the difference was the presence of a GA alert for approaches at GRU. A vocal instruction 

was used to simulate the GA alert for the APP and TWR controllers. For each scenario, a set of 

randomly selected flights were programmed to initiate a GA at a fixed altitude of 1,600 ft. For 

each scenario run that considered the presence of a GA alert for approaches, the alert was issued 

at 2,000 ft. These fixed altitudes were selected based on observed performance for the 

simulator. The simulation scheme is summarized in Figure 3-10. 

 

Figure 3-10 - Simulation sectorization scheme 

During the real-time simulation, a group of observers was responsible for collecting data 

regarding the timing of relevant flight events and ATC tasks to enable the quantitative 

assessment of operational performance. Table 3-5 describes the quantitative metrics computed 

for each simulation scenario run. 
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Table 3-5 - Quantitative metrics computed for each HITL simulation scenario run 

Metric Description 

M1 

Elapsed time (in seconds) between the start of the GA 

manoeuvre and the first ATC instruction issued by the TWR 

controller to the flight 

M2 

Elapsed time (in seconds) between the start of the GA 

manoeuvre and the first ATC instruction issued by the APP 

controller to the flight 

M3 
Elapsed time (in seconds) between the start of the GA 

manoeuvre and the landing of the flight 

At the end of the simulation, the controllers were asked to fill in a questionnaire about the 

perceived utility and operational impacts of the proposed real-time monitoring and alerting tool. 

The questionnaire was composed of multiple-choice questions, except for one open question at 

the end aimed at collecting general comments and observations. The objective questions were 

designed using the Likert scale (Likert, 1932) to measure the degree of agreement of the 

respondent with respect to the statement proposed. 

It is important to notice that all sessions of HITL simulations were part of the regular 

refresher training established to provide to the controllers with the competencies required to 

control air traffic effectively and efficiently within the São Paulo TMA, in accordance with 

ICAO requirements. Our participation was granted with the condition of not interfering in the 

established evaluation process of the controllers, design nor conduction of the exercises. The 

controllers were not informed in advance about what would happen in the exercises, nor about 

data collection, which ensured that the simulation did not have any prior behavioural 

interference. The data collection was performed in a very transparent way to the controllers, 

who were informed about the tool (GA alert) only when they assumed the shift in the controller 

working position (CWP). 

  



43 

 

4 Results and Discussion 

4.1 Analysis of Predictive Performance 

This section discusses the predictive performance of the algorithms developed for online 

detection of GA events. For this, the True Positive Rate (TPR) and the False Positive Rate 

(FPR) were calculated, as shown in Equations (7) and (8). 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (7) 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
     (8) 

Where TP is the number of true positives (GA events correctly identified), FN is the 

number of false negatives (GA events not identified), FP is the number of false positives 

(completed approaches incorrectly identified as GAs) and TN is the number of true negatives 

(completed approaches correctly identified). 

4.1.1 Rule-based Algorithm 

The rule-based algorithm computes ideal envelopes consisting of acceptable deviations 

from defined operational parameters and flags a flight as a potential GA whenever its 

parameters violate any of the established envelopes. The analysis is conducted for three 

envelopes computed with partial trajectory observations available when the aircraft reaches 

1600 ft, 1000 ft and 500 ft, simulating an online application. Whenever a specific trajectory 

observation violates, at least, one of the operational parameters referred to IAS (directly 

associated with the ROD), ROD or ALT, the observation is registered as an “infringement 

detection” and the flight is flagged as a potential GA. 

The application of the algorithm allowed for the detection of all go-around events since 

the first gate (1,600 ft), therefore providing a TPR of 100%. However, nearly all flights in the 

test data presented trajectory observations that violated the operational envelopes. Figure 4-1 

shows the average number of envelope infringement detections per flight for each evaluated 

gate. It is interesting to note the occurrence of envelope violations in altitudes as low as 500 ft. 

The results indicate that the simple application of operational rules currently used in practice to 

evaluate the flight profile is not sufficient to successfully anticipate go-around manoeuvres 
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during the approach. This emphasizes the operational variability and complexity of approach 

operations and the importance of learning this variability from actual data to better understand 

the actual operational tolerances and identify the deviations that actually lead to a go-around. 

 

Figure 4-1 - Average number of envelope infringement detections per flight for each evaluated gate 

4.1.2 Machine Learning-based Algorithm 

Differently than the previous analytical approach, the machine learning-based algorithm 

tries to predict the go-around events based on knowledge extracted directly from data, not using 

any prior expert knowledge regarding the flight operational performance during the approach 

phase. The first step was the identification of the nominal approach patterns through clustering 

analysis with the DBSCAN algorithm. Figure 4-2 shows that two clusters were identified for 

SBGR, corresponding to the nominal approach patterns to runways 09 (approach cluster 1) and 

27 (approach cluster 2). A Gaussian Mixture Model with two components was then learned for 

probabilistic modelling of the trajectory behaviour during the final approach. This model was 

applied in the test data to predict future trajectory points based on partial trajectory observations 

and identify anomalous behaviours, following the methodology described in Section 3.1.3.2. 

Figure 4-3 shows an example GA event that was correctly predicted with the algorithm based 

on trajectory observations at 7.5 NM from the runway threshold. 
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The blue shaded area shows the 95% confidence region for the total energy feature for 

the predicted approach pattern. The red line represents the predicted total energy features for 

the example flight. It is clearly noticeable that most of the features fell outside the confidence 

region, which made this trajectory to be flagged as an anomalous approach. 

 

 

Figure 4-2 - Nominal approach clusters identified for SBGR 

 

 

Figure 4-3 - Example prediction of a GA event 
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The overall predictive performance in the test data is presented in Figure 4-4. While the 

true positive rate increased as the aircraft gets closer to the airport, the false positive rate 

remained stable below 5%. At 4 NM from the runway threshold, to model was able to correctly 

predict 67% of the GAs. 

 

Figure 4-4 - Predictive performance of the machine learning-based algorithm. 

4.2 Analysis of Operational Impacts 

As planned, the proposed work to assess the operational impact of a novel real-time 

monitoring and alerting tool was tested through different scenarios in the ATC radar simulator 

at the LABSIM of ICEA. The data collection was performed during the Program of Activities 

and Employment of Simulation Laboratories (PAELS), which allows the controllers to receive 

theoretical and practical instructions, aiming at training in specific and non-routine situations 

of this important segment of the of Brazilian Airspace Control System (SISCEAB). 

Based on the data collected during the HITL simulation, the quantitative metrics listed in 

Table 3-5 were computed. The results that are displayed in Figures Figure 4-5, 4-6 and Figure 

4-7 show the average elapsed time between the start of the GA manoeuvre and the first ATC 

instruction issued by the TWR controller for each traffic scenario simulated without and with 

the GA alert. On average, it was observed a reduction of 3.5s on the time required for a positive 

reaction by the TWR controller in the presence of the GA alert. The reaction time may be 

understood as the time required for the controller to issue the first ATC instruction regarding 

the missed approach, such as the level to which the aircraft is to climb and heading instructions 

to keep the aircraft within the missed approach area and maintain the required safety 

separations. 
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The results show that, with the GA alert, the TWR controller was able to issue ATC 

instructions concerning the missed approach more quickly. 

 

Figure 4-5 - Impacts of the GA alert on the TWR reaction time 

A similar behaviour was observed for the APP controller. Figure 4-6 shows the average 

elapsed time between the start of the GA manoeuvre and the first ATC instruction issued by the 

APP FEED controller for each traffic scenario simulated without and with the GA alert. On 

average, a reduction of 8.2s was observed on the time required for a positive reaction by the 

APP controller in the presence of the GA alert. This suggests that the controller was able to 

plan, in advance, the actions to reintegrate the flight in the approach sequence, issuing more 

quickly the ATC instructions to accomplish the task. Interestingly, the results of the simulation 

showed that such opportunity for planning in advance resulted in more efficient decision-

making. Figure 4-7 displays the average elapsed time between the start of the GA manoeuvre 

and the landing of the aircraft. On average, it was observed a reduction of 141.6s in the flight 

time from the start of the GA until the landing of the aircraft when the GA alert was active. 

These results emphasize the importance of ATC decision support tools to increase the efficiency 

and the environmental performance of the air traffic. 
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Figure 4-6 - Impacts of the GA alert on the APP reaction time 

 

Figure 4-7 - Impacts of the GA alert on the flight time from the start of the GA until landing 

Besides the quantitative assessment of operational performance, a subjective evaluation 

regarding the perceived impacts of the proposed monitoring and alerting tool was carried out. 

Figures Figure 4-8, 4-9 and Figure 4-10 present the results of the questionnaire applied to 

controllers after the end of the simulation. 

First, the controllers were asked to compare the perceived levels of situational 

awareness, workload, and safety during the HITL simulation runs with and without the presence 

of the GA alert. Figure 4-8 shows that 100% of the controllers considered that the GA alert 
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increased the situational awareness during the GA events, with some indicating that the 

perceived level of situational awareness was much higher than usual. This very expressive 

percentage is a potential explanatory factor for the observed reductions in controller reaction 

time shown in Figures Figure 4-5 and Figure 4-6, as situational awareness is critical for fast and 

efficient decision-making. 

Most of the air traffic controllers (57%) considered that the workload was about the 

same as usual with the proposed alerting capability. This is a relevant result, as ATC is a high-

workload activity that ultimately determines airspace capacity. Therefore, the introduction of 

any novel automation tool should carefully consider the impacts on controller workload. 

In terms of safety, an expressive percentage of 57% of the controllers found that the 

presence of the GA alert generated a positive impact, with the remaining 43% indicating that 

the safety level was about the same as usual. As the approach and landing phase accounts for 

the highest share of accidents worldwide, the positive impact perceived by most controllers 

emphasizes the potential contribution of the proposed tool to enhance the overall flight safety. 

Next, the controllers were asked to assess potential changes in operational performance 

with the GA alert. Figure 4-9 shows that 100% of the controllers agreed that the alert facilitated 

the reintegration of the traffic in the approach sequence and 71% agreed that traffic flow 

efficiency increased. These results corroborate the observed reduction in flight time shown in 

Figure 6, highlighting the potential benefits of the proposed tool in terms of efficiency besides 

safety. Regarding the coordination process between the TWR and the APP, controller 

perception varied. 43% of the controllers disagreed with the statement that the GA alert 

facilitated the coordination. This result might be related with the fact that the GA alert was 

present for both the TWR and the APP controller, potentially affecting the form of coordination 

and the overall perception of its need.  

Figure 4-9 also shows that the alert performance is a very important aspect to be 

considered for practical implementation. A small percentage of the controllers (14%) 

considered that the alert timing could be more appropriate. Moreover, 43% of the controllers 

indicated that alert failures would be unacceptable. These results emphasize the importance of 

the reliability and the antecedence of the information provided by the tool. Since the accuracy 

of predictive models is affected by the prediction horizon, a trade-off will exist between 

different alert performance requirements. Therefore, the operational impacts of different levels 
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of alert performance, based on the actual performance of state-of-the-art predictive models, 

should be analysed in future studies. 

Finally, the controllers evaluated the utility of the GA alert for different ATC tasks. 

Figure 4-10 shows that the totality of the controllers considered that the alert was useful for 

clearance provision tasks, with 57% of the controllers attributing a medium utility score and 

43% a high utility score. A very high percentage of 86% of the controllers also found that the 

alert was useful for conflict resolution tasks. On the other hand, the perception of the controllers 

about the utility of the alert for coordination tasks varied from low to high, which is in line with 

the results shown in Figure 4-9. Overall, there was a positive perception about the global utility 

of the GA alert, with 57% of the controllers attributing a medium utility score and 43% a high 

utility score. 

 

Figure 4-8 - Perceived impacts of the GA alert on situational awareness, workload, and safety 

 

Figure 4-9 - Perceived operational performance with the GA alert 
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Figure 4-10 - Perceived utility of the GA alert for ATC tasks 
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5 Final Considerations 

5.1 Conclusions 

The objectives of this research were to develop a data-driven approach for real-time 

monitoring of arrival operations and alerting of go-arounds and to evaluate the operational 

impacts of such an alerting solution for ATC decision-making and performance. 

With respect to the first objective, we used surveillance data from an open-source flight 

tracking platform and developed analytical and machine learning approaches for the online 

detection of flight trajectory anomalies and prediction of go-around events. We specifically 

used flight tracking data for one month of arrival operations at Sao Paulo/Guarulhos 

International Airport. 

First, sequential heuristics based on the evaluation of vertical rates were applied to 

identify go-around events in the database offline. Using the labelled dataset, we developed two 

algorithms for online prediction of go-around events. The first one is a rule-based algorithm 

that considers the evaluation of operational parameters throughout the descent phase. The 

algorithm predicts a go-around whenever the flight profile falls outside trajectory envelopes 

that represent acceptable deviations from an ideal operational performance. The second one is 

a machine learning-based algorithm. It considers the application of clustering analysis to 

discover nominal patterns in the approach phase followed by probabilistic modelling of these 

nominal approach patterns. The probabilistic model is then applied in an online fashion, using 

partial trajectory observations, to detect an anomalous behaviour and predict the execution of a 

go-around. 

The algorithms were applied on test data to evaluate their actual operational 

performance. We found that only the machine learning-based algorithm was capable of 

discriminating the approach trajectories, enabling the correct detection of 67% of the go-

arounds at 4 NM from the runway threshold at a false positive rate lower than 5%. The results 

emphasized the operational variability and complexity of approach operations and the 

importance of learning this variability from actual data to better understand the actual 

operational tolerances and identify the deviations that can actually lead to a go-around. 

As a second objective, this work evaluated the operational impacts of a real-time 

monitoring and alerting solution that anticipates the occurrence of a go-around event towards 

ATC decision support in approach control facilities and aerodrome control towers. 
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The evaluation was performed with a human-in-the-loop (HITL) simulation of air traffic 

operations at Sao Paulo/Guarulhos International Airport. The simulation was based on four 

traffic scenarios that were run with and without the presence of a go-around alert for air traffic 

controllers during the approach. 

The results showed an increase in the perceived levels of situational awareness and 

safety as well as an increase in the efficiency of actual ATC decisions concerning the go-around. 

Overall, we observed a reduction of nearly two minutes in the flight time from the start of the 

go-around and the landing when the alert was active. This reduction in flight time can be directly 

associated with the improvement in the perceived level of situational awareness due to 

information received in advance. 

The operational performance metrics computed after the HITL simulation associated 

with the subjective evaluation results acquired with the questionnaires distributed to the 

controllers who participated in the simulation indicated that the proposed tool has a great 

potential to support ATC decision-making in real-time during go-around events, delivering an 

important contribution towards safer and more efficient flight operations. 
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5.2 Future work 

The proposed data-driven approach for monitoring and alerting of go-around events was 

based on the use of surveillance data mainly sourced from ADS-B. From a practical perspective, 

the performance, safety and interoperability requirements of ADS-B should guarantee that the 

operational service delivery and procedures are working as intended. In reality, the ADS-B data 

has known inconsistences and faults, where problems or abnormalities may arise during its 

broadcasting and they should be identified, tracked, analysed to correct the information 

disseminated as required, at the risk of compromising the integrity and reliability of the alert 

provided to the controller. It is worth mentioning that trajectory information can also be 

extracted from radar data of current ATC systems. Towards practical implementation, the use 

of this type of surveillance data should be explored. 

Future work could also explore the use of information extracted from the flight data 

recorder (FDR), in real-time, that receives various discrete, analog and digital parameters from 

a number of sensors and avionics systems from a flight data acquisition unit (FDAU). 

Information from the FDAU to the FDR is sent via specific data frames, which depend on the 

aircraft manufacturer and, after, this data could be routed to the ATC systems, so that flight 

trajectory anomalies may be precisely identified in advance. It is important to note that the use 

of this data may require specific regulation in order to protect the data confidentiality of the 

airline operators and their standard of operations. Additionally, this would require advanced 

communication technologies to exchange digital data between air and ground systems. 

Another potential future research direction could be the integration of data from 

air/ground systems, i.e., A-SMGCS (Advanced Surface Movement Guidance & Control 

System), Flight & Flow Information for a Collaborative Environment (FF-ICE), which also 

includes complementary procedures that deliver improved situational awareness to TWR 

controllers. Since runway incursion occurrences associated with the incorrect presence of an 

aircraft, vehicle, or person on the protected area of a surface designated for the landing and 

take-off of aircraft may be contributing factors to GA events, this information integrated to the 

models for the online detection of flight trajectory anomalies from aircraft surveillance data 

could increase the liability of an alerting solution for ATC decision-making. Weather data, 

airspace structure data (AOC, IAC, SID, STAR, etc), among other data types, may also be part 

of the equation in machine learning models, which could bring more precision in the final 

results. 
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Regarding the operational evaluation, one important aspect revealed by the 

questionnaire responses is that the potential occurrence of alert failures might not be easily 

handled by the controllers. In future studies, additional simulation experiments could be 

performed to evaluate how the predictive performance of such a decision support tool impacts 

the usability of the tool and the overall operational performance. For instance, the impact of 

false alarms on ATC workload and decision-making should be carefully investigated. 

Finally, despite the complexity of the ATM, Artificial Intelligence (AI), which is one of 

the most researched topics in computer science, has not quite reached end users in the ATM 

domain. In a safety-critical system such as ATM, it is key to ensure the trustworthiness of AI 

based systems. Developing strategies to enhancing the interpretability of machine learning 

models and building trust on AI-based decision support tools is another prominent future 

research direction. 
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